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Abstract

Large language models (LLMs) targeting different deployment scales and sizes
are currently produced by training each variant from scratch; this is extremely
compute-intensive. In this paper, we investigate if pruning an existing LLM and
then re-training it with a fraction (<3%) of the original training data can be a
suitable alternative to repeated, full retraining. To this end, we develop a set of
practical and effective compression best practices for LLMs that combine depth,
width, attention and MLP pruning with knowledge distillation-based retraining; we
arrive at these best practices through a detailed empirical exploration of pruning
strategies for each axis, methods to combine axes, distillation strategies, and search
techniques for arriving at optimal compressed architectures. We use this guide
to compress the Nemotron-4 family of LLMs by a factor of 2-4×, and compare
their performance to similarly-sized models on a variety of language modeling
tasks. Deriving 8B and 4B models from an already pretrained 15B model using our
approach requires up to 40× fewer training tokens per model compared to training
from scratch; this results in compute cost savings of 1.8× for training the full model
family (15B, 8B, and 4B). MINITRON models exhibit up to a 16% improvement
in MMLU scores compared to training from scratch, perform comparably to
other community models such as Mistral 7B, Gemma 7B and Llama-3 8B, and
outperform state-of-the-art compression techniques from the literature. We have
open-sourced MINITRON model weights on Huggingface 2, with corresponding
supplementary material including example code available on GitHub 3.

1 Introduction
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Figure 1: Results for MINITRON. Compres-
sion results in significant reduction of training
costs for additional models (40×) while pro-
ducing better results.

Large language models (LLMs) now dominate real-
world natural language processing and have demon-
strated excellent proficiency in understanding diffi-
cult contexts [7, 40, 50, 47, 46]. To aid users tar-
geting different deployment sizes and scales, model
providers often train an entire family of models from
scratch, each with a different size (number of param-
eters). For instance, the LLaMa-2 model family [47]
includes three different variants with 7, 13, and 70
billion parameters, while the Pythia family [6] offers

∗Equal contribution.
2https://huggingface.co/nvidia
3https://github.com/NVlabs/Minitron
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DEP MLP ATT EMB Distillation Loss LM Val Loss

✓ ✓ ✓ ✓ 5.35 → 0.38 2.062
× ✓ ✓ ✓ 6.33 → 0.37 2.049
× ✓ ✓ × 5.07 → 0.42 2.101
✓ × × × 8.35 → 0.49 2.155

Train from scratch (random init) 12.27 → 2.34 3.953

Table 1: Demonstration of how various pruning strategies perform before and after lightweight
retraining using ∼1.8B tokens. We prune the Nemotron-4 15B model down to the size of Nemotron-3
8B and report the change in distillation loss (KL divergence [28] on logits) and the final LM validation
loss with retraining. We see that width (attention, MLP, embedding) pruning outperforms depth, but
only after retraining. The last row shows change in loss for the Nemotron-3 8B model.

a selection of eight models with sizes ranging from 80 million to 12 billion parameters. However,
training multiple multi-billion parameter models from scratch is extremely time, data and resource-
intensive. In this paper, we ask the following question: can we train one big model, and obtain smaller,
more accurate (w.r.t. training from scratch) models from it through a combination of weight pruning
and retraining, while only using a small fraction of the original training data? Achieving such a goal
would make producing LLMs targeting different deployment scales significantly cheaper. Weight
pruning is a powerful and well-known technique for reducing model size [49, 21]. In this paper, we
focus on structured pruning, where blocks of nonzero elements are removed at once from model
weights; examples of structured pruning techniques include neuron, attention head, convolutional
filter, and depth pruning [32, 18, 51, 4, 34, 53, 26]. While the literature is rich with numerous papers
on structured pruning, to an end-user, it’s not always clear which technique to use, when, and how
to combine them to consistently obtain good pruned models. Pruning is also often accompanied by
some amount of retraining for accuracy recovery [49]; this phase is extremely expensive in modern
LLMs, often requiring access to large amounts of curated data. To the best of our knowledge, no
existing work on structured pruning explores data-efficient retraining techniques such as distillation
to minimize retraining cost.

In this paper, we perform a thorough empirical exploration of structured pruning and retraining
across multiple axes: neurons in feed-forward layers, heads in multi-head attention layers, embedding
channels, and model depth. Through our experiments, we gain valuable non-trivial insights on the
metrics and hyper-parameters to use for each axis and how to effectively combine axes for higher
compression rates. For instance, we discover that pruning neurons and heads alone is initially superior
to pruning neurons, heads and embedding channels; however, after a few steps of retraining, this
order flips. Similarly, we discover that width pruning works better than depth, but only after some
retraining (see Table 1 for a concrete example). We also investigate in detail how a pruned model
can be efficiently retrained for optimal performance using minimal additional data. Based on our
findings, we develop a practical list of LLM compression and retraining best practices. Finally, we
apply our findings to prune the Nemotron-4 15B model [42] and produce a family of smaller models,
named MINITRON, that compare favorably to similarly-sized models. MINITRON 8B achieves better
accuracy than Nemotron-3 8B [39] (using 40× fewer training tokens) and LLaMa-2 7B [47], and
comparable accuracy to Mistral-7B [25], Gemma 7B [46] and Llama-3 8B; likewise, MINITRON 4B
outperforms the similarly-sized Gemma2 model and compares favorably to the Phi-2 model.

This paper makes the following key contributions:

1. Provides the first thorough empirical exploration of structured pruning and retraining in
LLMs across multiple axes. It offers valuable insights on metrics and hyper-parameter
settings for pruning, order of pruning, effects of combining different axes, and retraining
techniques focusing on data efficiency.

2. Presents a list of effective and practical LLM compression and retraining best practices
grounded in extensive empirical evidence.

3. Introduces the MINITRON family of LLMs, which are obtained through direct pruning of
the Nemotron-4 15B model. Deriving MINITRON models from Nemotron-4 15B requires
up to 40× fewer training tokens compared to training from scratch, while still (1) comparing
favorably to various popular community LLMs of similar size, and (2) outperforming
state-of-the-art depth and width-pruned models from the literature.
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2 Pruning Methodology

As shown in Figure 2, we start the pruning process by first computing the importance of each layer,
neuron, head, and embedding dimension and then sorting these importance scores to compute a
corresponding importance ranking. In this section, we detail how rankings are computed for each
axis and then subsequently used to obtain a pruned model.

2.1 Background and Notation

We begin with some formal definitions. Multi-Layer Perceptron (MLP) layers have two linear layers
with a non-linear activation in between:

MLP(X) = δ

(
X ·W T

1

)
·W 2

where X denotes the input, and W1 and W2 are the two associated weight matrices in the MLP
layer. W 1,W 2 ∈ Rdhidden×dmodel where dmodel and dhidden are the embedding and MLP hidden
dimensions, respectively. δ(·) refers to the non-linear activation function.

We define the Multi-Head Attention (MHA) operation for an input X as follows:

MHA(X) = Concat(head1, ...headL) ·WO,

headi = Attn(XWQ,i,XWK,i,XW V,i),

here, WQ,i,WK,i,W V,i ∈ Rdhead×dmodel and WO ∈ RLdhead×dmodel where dhead is the size of a
single attention head, and L is the total number of heads.

Finally, the Layer Normalization operation (LayerNorm) [5] on an input X is defined as follows,

LN(X) =
X− µ√
σ2 + ϵ

⊙ γ + β

where µ and σ2 represent the mean and variance across the embedding dimensions, ϵ is a small value
for numerical stability, and γ and β are learnable parameters.

2.2 Importance Analysis

Estimating the importance or sensitivity of individual neural network components such as neurons,
attention heads, and layers is a well-studied area [9, 13, 41]. In the context of LLMs, recent work
has highlighted the ineffectiveness of traditional metrics such as weight magnitude for estimating
importance [33]; instead, recent work on structured pruning of LLMs has focused on metrics such as
gradient/Taylor [33], cosine similarity [34], and perplexity on a calibration dataset [26].

Owing to their enormous size, computing gradient information on modern LLMs is prohibitively
memory and compute-intensive, and one of our primary goals is to avoid this expensive step when
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Figure 2: High-level overview of our proposed iterative pruning and distillation approach to train a
family of smaller LLMs.
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trying to obtain importance information. In this paper, we propose a purely activation-based impor-
tance estimation strategy that simultaneously computes sensitivity information for all the axes we
consider (depth, neuron, head, and embedding channel) using a small (1024 samples) calibration
dataset and only forward propagation passes. We now describe how this strategy is implemented for
each individual axis.

Width: we compute the importance of each head, neuron and embedding channel by examining
the activations produced by the MHA, MLP and LayerNorm layers, respectively. We use a small
calibration dataset D for this purpose 4. Formally, we compute activation-based importance scores
for heads, neurons, and embedding channels as:

F
(i)
head =

∑
B,S

∥Attn(XWQ,i,XWK,i,XW V,i)∥2

F (i)
neuron =

∑
B,S

X
(
W i

1

)T
, F

(i)
emb =

∑
B,S

LN(X)i

Here, W i
1 refers to the ith row of the weight matrix W1.

∑
B,S refers to aggregation along the batch

and sequence dimensions. We observe from our experiments that performing a simple summation
here is not always optimal. To this end, we perform a detailed evaluation of various aggregation
functions along each of these dimensions and their corresponding performance in Table 15(Appendix).
Specifically, for a sequence of scores S, we try three functions: (1) mean: 1

n

∑n
i=1 Si, (2) L2 norm:√∑n

i=1 S
2
i , and (3) variance: 1

n

∑n
i=1(Si − S̄)2. Layer-wise scores are then summed up to obtain

network-wide importance scores for each axis.

Depth (Layers): for depth pruning, we evaluate the importance of each layer using two metrics:
(1) perplexity (PPL) [26] and (2) Block Importance (BI) [34]. For PPL-based ranking, we simply
remove a single layer and compute its effect on perplexity of this pruned model; this serves as the
“importance” or sensitivity of the layer [26]. BI [34] uses the cosine distance between the input and
output of a layer to estimate layer sensitivity. The BI score of layer i is computed as:

BIi = 1− EX,t

XT
i,tXi+1,t

∥Xi,t∥2∥Xi+1,t∥2

where Xi refers to the input to layer i, and Xi,t denotes the tth row of Xi. The BI of all layers
can be computed in a single forward pass, giving it a significant speed advantage over PPL-based
importance. Additionally, following Gromov et al. [14], we can extend BI to estimate importance of
several contiguous layers at the same time.

Iterative Importance: in this setting, we iteratively alternate between pruning and importance
estimation for a given axis or combination of axes. Formally, given number of iterations T and source
and target dimensions (layers, heads, etc.) ds and dt, respectively, we iteratively compute importance
on ds − i ·

(
ds−dt

T

)
dimensions and prune to ds − (i+ 1) ·

(
ds−dt

T

)
dimensions; i ∈ [0, T − 1]. We

evaluate the effectiveness of iterative importance estimation in Table 10.

2.3 Obtaining a Pruned Model

Figure 2 provides an overview of how pruned models are obtained. For a given architecture configu-
ration, we first rank the elements of each axis according to the computed importance and perform
trimming (reshaping) of the corresponding weight matrices directly. For neuron and head pruning,
we trim MLP and MHA layer weights, respectively. In the case of embedding channels, we trim the
embedding dimension of the weight matrices in MLP, MHA, and LayerNorm layers.

When pruning attention heads, we add the residual info from the pruned heads back into the remaining
heads, with the aim of preserving relevant knowledge from the pruned heads. This idea is an MHA
analog of Layer Collapse [53] for depth pruning and provides a boost to model accuracy in our
experiments. Formally, given L original attention heads head1, head2, ..., headL being pruned to
K heads, each new head will have the form (for the ith head): headi + (headi − head2K−i+1) for
i ∈ [K − (L −K),K]. In case of grouped query attention [3], we apply this strategy only to the
query heads.

4We provide additional details of the calibration dataset in Section 4.
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Figure 3: Overview of our neural architecture search algorithm. RT refers to retraining.

Lightweight Neural Architecture Search: Figure 3 provides an overview of our search strategy
for finding optimal architecture configurations. Given a search space and parameter budget (left side
of the figure), we enumerate all feasible architectures meeting the parameter budget. At this stage,
while it’s possible to further reduce the search space size using strategies such as genetic search
and/or Bayesian optimization, we found that sticking to commonly used neuron, head and embedding
dimensions, along with a reasonably narrow target parameter range (less than 1 billion) was sufficient
to obtain tractable solution sets (less than 20 candidates). The feasible candidates then undergo
lightweight retraining (∼1.8B tokens in this work). We show in Figure 10 that this retraining stage
stabilizes relative rankings and helps us find a more accurate candidate to train further. We note that
parameter-efficient fine-tuning techniques such as LoRA [23] can also be applied at this stage; we
leave the exploration of such techniques to future work.

3 Retraining

We use the term retraining to refer to the accuracy recovery process following pruning. In this paper,
we explore two retraining strategies: (1) conventional training, leveraging ground truth labels, and (2)
knowledge distillation using supervision from the unpruned model (teacher).

Retraining with Knowledge Distillation: Knowledge Distillation (KD) involves transfer of knowl-
edge from a larger or more complex model called the teacher to a smaller/simpler model called the
student [20]. The knowledge transfer is achieved by having the student model mimic the output
and/or the intermediate states of the teacher model. In our case, the the uncompressed and pruned
models correspond to the teacher and student, respectively.

The output probability distribution of an LLM for a given token xi is computed as:

p(xi, τ) =
exp

(
xi

τ

)∑|V |
j=1 exp

(xj

τ

)
where τ is the softmax temperature and |V | is the vocabulary size. Logit-based KD loss across the
sequence of all output tokens is represented as

Llogits =
1

l

l∑
k=1

Loss(pkt (x, τ), p
k
s(x, τ))

here, pkt (x, τ) and pks(x, τ) represent the teacher and student probability distributions on the kth

token, respectively, and l represents the sequence length.

For distillation, we explore various loss functions, and several combinations of intermediate states
and mappings across the Transformer model as the loss components, along with their respective
trade-offs. This is illustrated in Figure 4. The intermediate state-based KD loss across a sequence of
Transformer-specific hidden states is represented as

Lis =
1

l

∑
k∈H

l∑
i=1

Lossk(h
ki
t , hki

s )

where hki
t and hki

s represent the kth teacher and student hidden state for the ith token, respectively,
and l represents the sequence length; H is the set of chosen intermediate states. The mismatch
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Figure 4: Overview of Distillation. A student model with N layers is distilled from a teacher model
with M layers. The student learns by minimizing a combination of embedding output loss, logit
loss and transformer encoder specific losses mapped across student block S and teacher block T .

in student and teacher hidden states is handled by learning a shared linear transformation during
distillation to upscale the student hidden state to the teacher hidden state dimension. The hidden states
used are always post LayerNorm. We report our experimental results for retraining in Section 4.3.

The total loss L is computed as L = LCLM + Llogits + α× Lis; where LCLM is the student cross-
entropy loss against the ground truth labels, and α is a weighting coefficient. As the magnitudes of
Llogits and Lis differ significantly, we found that computing α dynamically as Llogits

Lis
achieves better

results compared to using a constant.

4 Experiments and Results

We evaluate our pruning strategy on the Nemotron-4 family of models [42]; specifically, we compress
the Nemotron-4 15B model with 15.6 billion parameters down to two target parameter ranges: (1)
8 billion, and (2) 4 billion. We use the NVIDIA Megatron-LM framework [45] to implement our
pruning and distillation algorithms for compression and retraining.

Data and Training Hyperparameters: we use the Nemotron-4 curated 8 trillion token (8T) base
pretraining dataset and the continued training dataset (CT) [42]. We use the 8T training blend for all
our ablations and use a combination of both data blends to retrain our final models. Unless otherwise
specified, we use 1.8 billion tokens (400 steps) for lightweight retraining. The calibration dataset D
used for importance estimation consists of 1024 samples drawn randomly from the full dataset. We
use the same optimizer settings and data split as [42] with cosine LR decay schedule from 2−4 to
4.5−7.

Downstream Tasks: following Touvron et al. [47], we evaluate our models of similar size on a
series of downstream tasks, including MMLU [19], HumanEval [8] for Python code generation,
several question-answering datasets for common-sense reasoning: Arc-C [10], HellaSwag [54],
TruthfulQA [29] and WinoGrande [43] and XL-Sum English [17] for summarization. We report
the 5-shot performance on MMLU, 5-shot on Winogrande, 25-shot on ARC-Challenge, 10-shot
on HellaSwag, 0-shot on 20% of XL-Sum and average pass@1 scores for HumanEval and MBPP.
For pass@1 scores we use a temperature of 0.2 and nucleus sampling [22] with top-p = 0.95.
For instruction-tuned models, we use MT-Bench [55], Instruction-Following Eval (IFEval) [57],
ChatRAG-Bench [30], and Berkeley Function Calling Leaderboard (BFCL) [52].

Model Layers Hidden Size Att. Heads Query Groups MLP Hidden Parameters

Nemotron-4 15B 32 6144 48 8 24576 15.6B
Nemotron-3 8B 32 4096 32 32 16384 8.5B
MINITRON 8B 32 4096 48 8 16384 8.27B
MINITRON 4B 32 3072 24 8 9216 4.19B

Table 2: Architecture details of the uncompressed Nemotron and pruned MINITRON models. Vocabu-
lary size is 256k for all models.
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4.1 Main Pruning Results

We start by introducing the following list of structured compression best practices:

1. To train a family of LLMs, train the largest one and prune+distill iteratively to smaller LLMs.
2. Use (batch=L2, seq=mean) importance estimation for width axes and PPL/BI for depth.
3. Use single-shot importance estimation; iterative provides no benefit.
4. Prefer width pruning over depth for the model scales we consider (≤ 15B).
5. Retrain exclusively with distillation loss using KLD instead of conventional training.
6. Use (logit+intermediate state+embedding) distillation when depth is reduced significantly.
7. Use logit-only distillation when depth isn’t reduced significantly.
8. Prune a model closest to the target size.
9. Perform lightweight retraining to stabilize the rankings of searched pruned candidates.

10. If the largest model is trained using a multi-phase training strategy, it is best to prune and
retrain the model obtained from the final stage of training.

We arrive at this list through a detailed set of ablations and experiments, and each point is backed
by empirical evidence, as we demonstrate in the rest of this section and the Appendix. We use this
list to obtain our MINITRON pruned and retrained models, whose performance is shown in Tables 3
and 4. Here, we compare the performance of our pruned models to multiple baselines: (1) the
original Nemotron-4 15B model, (2) the previous generation Nemotron-3 8B model, and (3) a set
of similarly-sized community models, all trained from scratch with trillions of tokens. Evaluation
is performed on the downstream tasks described earlier in this Section. In both tables, we list the
number of full and non-embedding parameters, along with the number of training tokens used to
arrive at the model.

We further compare the MINITRON models to state-of-the-art depth and width-pruned baselines
in Table 5; namely, LLM-Pruner [33], SliceGPT [4], LaCo [53], ShortGPT [34], and Sheared
LLaMa [51]. Table 2 lists the architecture details of the Nemotron and MINITRON models shown in
Tables 3 and 4. In the following subsections, we will go into more detail on how we arrived at the
MINITRON pruned models.

From Table 3, we notice that MINITRON 8B compares favorably to the latest community models of
the same size. Specifically, we outperform Nemotron-3 8B and LLaMa-2 7B, and perform on par
with Mistral 7B, Gemma 7B and LLaMa-3 8B, all while using significantly fewer training tokens.
MINITRON 8B also significantly outperforms multiple depth-pruned models of larger size (∼ 10B
parameters) (Table 5). From Table 4, we notice that our smaller model, MINITRON 4B, retains
model capabilities better compared to small specialized models that score highly only on some
tasks, outperforms the Gemma2 model and is significantly superior to multiple depth and/or width
pruned models shown in Table 5.

Models
Benchmark Metric Llama-3 Llama-2 Mistral Gemma Nemotron-4 Nemotron-3 MINITRON

# Parameters 8B 6.7B 7.3B 8.5B 15.6B 8.5B 8.3B
# Non-Emb. Params 5.9B 6.4B 7B 7.7B 12.5B 6.4B 6.2B
# Training Tokens >15T 2T 8T 6T 8T 3.8T 94B

K
no

w
le

dg
e,

L
og

ic winogrande (5) acc 78 74 78.5 78 83.6 75.9 79.0
arc_challenge (25) acc_norm 58 53 60.3 61 58.8 52.8 52.6
MMLU(5) acc 65 46 64.1 64 66.6 54.7 63.8
hellaswag(10) acc_norm 82 79 83.2 82 84.6 78.5 80.7
gsm8k(5) acc 50 14 37 50 48.5 24.0 51.3
truthfulqa(0) mc2 44 39 42.6 45 40.7 36.5 42.6
XLSum en (20)(3) rougeL 31 31 4.80 17 32 30.9 31.2

Coding MBPP(0) pass@1 42 20 38.8 39 38 27.04 35.2
humaneval (n=20)(0) pass@1 28 12 28.7 32 35.4 20.7 31.6

Table 3: Performance of our pruned MINITRON 8B model compared to multiple baselines: the
original Nemotron-4 15B, the previous generation Nemotron-3 8B, and multiple community models.
MINITRON 8B uses 40× fewer tokens than Nemotron-3 8B. All evaluations run by us, except for
entries marked with *, which we report from the corresponding papers.
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Models
Benchmark Metric Phi-2 Gemma Gemma2* Qwen2* MiniCPM* MINITRON

# Parameters 2.7B 2.5B 2.6B 1.5B 2.7B 4.2B
# Non-Emb. Params 2.5B 2B 2B 1.3B 2.4B 2.6B
# Training Tokens 1.4T 3T 2T 7T 1.1T 94B

Knowledge, Logic

winogrande (5) acc 74 67 70.9 66.2 - 74
arc_challenge (25) acc_norm 61 48 55.4 43.9 - 50.9
MMLU(5) acc 57.5 42 51.3 56.5 53.5 58.6
hellaswag(10) acc_norm 75.2 72 73 66.6 68.3 75
gsm8k(5) acc 55 18 23.9 58.5 53.8 24.1
truthfulqa(0) mc2 44 33 - 45.9 - 42.9
XLSum en (20)(3) rougeL 1 11 - - - 29.5

Coding
MBPP(0) pass@1 47 29 29.6 37.4 - 28.2
humaneval (n=20)(0) pass@1 50 24 17.7 31.1 - 23.3

Table 4: Performance of MINITRON 4B model compared to similarly-sized community models. All
evaluations run by us, except for entries marked with *, which we report from the corresponding
papers. We only compare to base models without SFT and DPO, therefore Phi-3 is excluded.

Instruction Tuning: to better understand how MINITRON models perform after supervised fine-
tuning (SFT), we perform SFT on MINITRON 4B using instruction-tuning data used for Nemotron-4
340B [38] to create MINITRON 4B-instruct, and evaluate it on various tasks, including instruction-
following and roleplay (IFEval and MT-Bench), RAG QA (ChatRAG-Bench), and function calling
(BFCL). The results for this experiment are shown in Tables 6 to 9. Tables 6 to 8 demonstrate that
MINITRON 4B-instruct has strong instruction-following, roleplay and RAG capabilities, beating
similarly sized models across all tasks. On function calling (Table 9), MINITRON 4B-instruct
outperforms Gemma-2B-IT and even Llama-3-8B-instruct.

Best Practice #1: in summary, Tables 3- 9 provide strong empirical evidence to support the claim
that training one single big model, and obtaining smaller ones from it through pruning + retraining
achieves higher accuracy and is extremely cost/compute-efficient when compared to training them
from scratch. Further, our efficient retraining strategy also eliminates the need to curate trillions of
tokens of data.

Cost Savings for Training a Model Family: the FLOPs required per training step 5 for the 15B, 8B,
and 4B models in the Nemotron-4 model family are, respectively: 4.4e17, 2.5e17 and 1.2e17. With
the assumption that each model in the family is trained with an equivalent token count, steps and
batch size, we obtain the following FLOP count for training each model in the family from scratch:
(4.4e17+ 2.5e17+ 1.2e17)× steps. As noted from Tables 3 and 4, our approach requires 40× fewer
training tokens for each additional model, hence resulting in the following updated FLOP count for
the family: (4.4e17 + 2.5e17/40 + 1.2e17/40)× steps; the corresponding cost savings for training
the full Nemotron-4 family using our approach is thus 1.8×.

We now dive deeper into our empirical ablations that help us arrive at the list of best practices. Unless
otherwise specified, we run these ablations on the Nemotron-4 15B checkpoint prior to continued
training with the CT data blend.

4.2 Obtaining the Best Pruned Model

Best Aggregation Metric (Best Practice #2): we start by exploring the best aggregation metric for
use with our activation-based pruning criteria (see Section 2.2 for more details). Table 15 (Appendix)
shows how zero-shot LM loss and Wikitext2 perplexity [35] vary w.r.t different intra-batch and
sequence aggregation functions. Here, the Nemotron-4 15B model is pruned to the Nemotron-
3 8B architecture with no retraining. We notice that there is significant variation in zero-shot
performance based on the aggregation metric, indicating the importance of selecting the right one.
Both (batch=L2, seq=mean) and (mean, mean) perform well; in the remainder of the paper,
we use (l2, mean) primarily due to its slightly better performance on the 8T dataset. To further
evaluate if these relative rankings hold after retraining, we perform a related experiment: we prune
the same 15B model to 8B using: (1) the best ((L2, mean) metric, and (2) a poorly performing
(L2, L2) metric, and perform retraining on both for 400 steps (∼1.8B tokens) The results of this

5Assume a batch size of 1152.
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8
B

ill
io

n

Models
Benchmark Metric LLMPruner SliceGPT LaCo ShortGPT Sheared LLaMa MINITRON

# Parameters 9.8B 9.9B 9.8B 9.8B - 8.3B
# Non-Emb. Params 9.5B 9.5B 9.5B 9.5B - 6.2B

MMLU(5) acc 25.2 37.1 45.9 54.7 - 63.8
hellaswag(10) acc_norm 67.8 55.7 64.4 66.6 - 80.7

4
B

ill
io

n

# Parameters 4.8B 4.9B 4.9B 4.9B 2.7B 4.2B
# Non-Emb. Params 4.5B 4.6B 4.6B 4.6B 2.5B 2.6B

winogrande (5) acc - - - - 64.2 74
arc_challenge (25) acc_norm - - - - 41.2 50.9
MMLU(5) acc 23.33 28.92 26.45 43.96 26.4 58.6
hellaswag(10) acc_norm 56.46 50.27 55.69 53.02 70.8 75
gsm8k(5) acc - - - - 23.96 24.1

Table 5: Performance of MINITRON models w.r.t recent state-of-the-art models obtained through
depth/width pruning. Top and bottom halves show results for MINITRON 8B and 4B, respectively.

Model Non-
Emb.
Params

Tokens Total

MINITRON 4B-instruct 2.6B 90B 5.61
Phi-2 2.5B 1.4T 4.29
Qwen-1.5 Chat 1.2B N/A 5.29
Gemma-2B-IT 2B 6T 5.19
StableLM 2 Chat 1.6B 2T 5.42
TinyLlama v1.0 Chat 1.1B 3T 3.46

Table 6: Evaluation results on MT-Bench.

Model Prompt-
level Acc.
(strict)

Prompt-
level Acc.
(loose)

Instruction-
level Acc.
(loose)

MINITRON 4B-
instruct

31.6 35.49 44.84

Gemma-2B-IT - 28.70 40.50
Qwen2-1.5B-
Instruct

29 - -

Table 7: Evaluation results on IFEval.

experiment are shown in Figure 5 (Appendix). From the Figure, we conclude that these rankings
continue to hold post-retraining.

Iterative Importance (Best Practice #3): we evaluate whether iterative importance estimation
provides any benefit (described in Section 2.2) and report results in Table 10. Here, we take the
Nemotron-4 15B model and prune the embedding dimension alone using number of iterations T=1, 2,
and 4 iterations to the target value of 4096. We then perform lightweight retraining of all 3 candidates
for 1.8B tokens. From the Table, we observe that while the iterative approach appears to be better
before retraining, all 3 candidates converge to the same loss value, indicating no benefit.

Combining Depth and Width (Best Practice #4): we perform a simple experiment to compare the
efficacy of width vs. depth pruning. Using the PPL and BI metrics defined in Section 2.2, we remove
the 16 least important layers from the Nemotron 15B model based on both metrics to arrive at two
variants of depth pruned models. We also perform neuron, head and embedding channel pruning to
target the Nemotron-3 8B model and arrive at the width pruned variant. Finally, we combine depth
(remove 4 least important layers) and width pruning to arrive at the fourth variant. We report the
results of this experiment in Table 11. We notice that even though the depth-width pruned variant has
a lower loss post-pruning, we see the results flip around 200 steps of retraining (0.8B tokens); Table 1
and Figure 6 (Appendix) further illustrate this.

4.3 Retraining and Search

Distillation vs. Conventional Training (Best Practice #5): in this experiment, we train a 4B
parameter model and compare: (1) train with random initialization (4B-Random-Init); prune 15B to
4B, then (2) retrain with conventional training (4B-Pruned), and (3) retrain with distillation using the
15B model as the teacher (4B-Pruned-Distill). Since distillation adds training overheads (additional

Model Avg

MINITRON 4B-instruct 41.11
Gemma-2B-IT 33.31

Table 8: Evaluation results on ChatRAG-
Bench.

Model Avg.

MINITRON 4B-instruct 64.23
Gemma-2B-IT 47.00

Llama-3-8B-instruct 58.78

Table 9: Evaluation results on BFCL.
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Iterations Initial (Zero-Shot) Validation Loss Final Validation Loss

T=1 5.43 1.92
T=2 5.55 1.92
T=4 5.24 1.92

Table 10: MINITRON LM loss values for EMB pruning across iterations, before and after retraining.

Model Parameters LM Loss

MINITRON 8B Depth (PPL) [26] 9.39B 2.155
MINITRON 8B Depth (BI) [34] 9.39B 2.177
MINITRON 8B Width 7.74B 2.049
MINITRON 8B Depth + Width 7.91B 2.062

Table 11: Depth vs width pruning. LM loss comparison post retraining with 1.8B tokens.

forward pass on the teacher model), we compare approaches under iso-compute settings. The results
for this experiment are shown in Table 12. Here, we observe a significant improvement in MMLU for
(3) while both (1) and (2) score randomly. On HellaSwag, (3) > (2) > (1). This clearly demonstrates
the superiority of using distillation over conventional training after pruning.

Model Tokens Hellaswag MMLU

4B-Random-Init 150B∗ 46.22 24.36
4B-Random-Init 400B 48.23 26.24
4B-Pruned (prune Nemotron-4 15B) 150B∗ 50.85 24.57
4B-Pruned-Distill (prune Nemotron-4 15B) 100B∗ 51.04 37.81

4B-Pruned-Distill (prune MINITRON 8B) 100B∗ 52.04 42.45
Table 12: Accuracy comparison for 4B using the 8T blend. ∗ Indicates settings with iso-compute.

Choice of Loss Function (Best Practice #5): we experiment with Kullback-Leibler divergence
(KLD), MSE, cosine similarity and reverse KLD (R-KLD) to compute Llogits. Recent work has
shown R-KLD [15, 27] to be a better fit than KLD in the SFT/instruction-following setting, and
Agarwal et al. [2] claim the choice of loss is task-dependent. We observe from Table 17 and 18
(Appendix) that KLD is the best choice for pruned base model training.

Choice of Losses (Best Practices #6 and #7): typically, a weighted combination of LCLM and
Llogits is used for distillation. We find that using Llogits alone results in the best performance as
shown in Table 17 (Appendix). For Lis = Lemb + Latt + Li + Lo , we make several observations
similar to Lu et al. [31]; these are listed in Appendix A.3 and in Table 19. Most notably, we observe no
improvements from using Lis when retraining models that don’t prune the depth axis significantly,
such as MINITRON 8B and MINITRON 4B and hence use Llogits alone in such cases (see Table 16 in
the Appendix).

One-shot vs Iterative Pruning and Distillation Across Model Sizes (Best Practice #8): compress-
ing Nemotron-4 15B to MINITRON 4B requires an aggressive 73.3% reduction of original model
weights. We hypothesize that aggressive one-shot pruning loses out on important capabilities of the
base LLM. We thus explore a simple iterative two-step pruning and retraining strategy where we
first prune and retrain Nemotron-4 15B to create MINITRON 8B (∼46% reduction) and further prune
and retrain the latter to MINITRON 4B (∼50% reduction). Table 12 shows the comparison between
single-shot and iterative pruning, and demonstrates that iterative achieves a 12% improvement in the
MMLU scores compared to the one-shot strategy. During the final retraining step, we observe that
using Nemotron-4 15B as the teacher achieves superior results compared to using MINITRON 8B.

Search with Retraining (Best Practice #9): For lightweight neural architecture search, we use the
search spaces defined in Table 13 for MINITRON 8B and 4B.

We further specify a target parameter range of 8 and 4 billion parameters for the respective models,
with a tolerance of 5%. With these settings, we obtain 15 and 18 feasible candidates for the 8B
and 4B parameter targets, respectively. The architecture configurations for these candidates are
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Target Layers Heads MLP Exp. Factor Embedding

MINITRON 8B [29-32] {32,48} {2.5,3,3.5,4} {4096,4680,5120,5632,6144}
MINITRON 4B [29-32] {24,32,48} {2.5,3,3.5,4} {2560,3072,3584,4096,4608}

Table 13: MINITRON 8B and 4B search space.

Strategy Tokens MMLU HellaSwag PIQA HumanEval

Phase1 + Phase2 113B 54.7 80.3 77.2 25.6
Phase2 only 94B 61.9 80.1 76.7 30.5

Table 14: Accuracy comparison of single vs multi-phase training approach with MINITRON 8B-
Width-pruned. Note: This is not the searched 8B model in Table 3.

provided in Table 20 (Appendix). As described in Section 2.3, we perform lightweight retraining of
all feasible candidates. Figure 10 illustrates how validation loss changes for the 8B candidates as
training progresses. We notice that relative rankings undergo significant changes up to ∼ 300 steps,
and then stabilize.

Single vs Multi-Phase Retraining (Best Practice #10): Recent studies [1] [24] [42] [44] have
shown improved results with multi-phase pretraining routines. Initially, models are trained on web
data, followed by a lightweight phase with cleaner data. We explored two compression techniques:
(1) prune the phase 1 checkpoint, retrain with portions of phase 1 and 2 data, and (2) prune the phase
2 checkpoint, retrain with a portion of phase 2 data. Table 14 shows that (2) is sufficient to regain
accuracy and surpasses (1). This strategy is used for our best models, also suggesting that for further
aligned models, it may suffice to prune the aligned model and retrain with a portion of the alignment
dataset.

5 Related Work

Structured LLM Pruning: there have been a number of recent structured pruning papers specifically
targeting LLMs; we can broadly classify these works into two main categories: (1) ones that prune
only depth (layers), (2) ones that prune width (attention heads, MLP intermediate dimension, etc.)
and/or depth. Recent work in the first category (depth pruning) includes ShortGPT [34], LaCo [53],
and Shortened LLaMa [26]; for pruning layers in MINITRON models, we reuse and extend the metrics
proposed in some of these works (eg: block importance from ShortGPT [34]). A number of recent
papers have also proposed new saliency metrics and pruning strategies targeting width dimensions:
namely, embedding channels, attention heads, and MLP intermediate channels [11, 4, 51, 33].
Most work in this category uses learnable masks, combined with an Augmented Lagrangian loss
formulation to arrive at optimal width masks [4, 51, 33]. At LLM scale, this strategy has multiple
disadvantages: (1) it requires compute and memory-intensive gradient computations, and (2) it
requires a considerable amount of data and fine-tuning to arrive at reasonable masks. The notable
exception in this line of work is Dery et al. [11], which recognizes these limitations and proposes
saliency metrics that can be computed with only forward passes. To the best of our knowledge, we
provide the first pruning strategy that (1) simultaneously targets both width and depth dimensions,
(2) works at LLM scale (i.e., uses only forward passes for computing importance and uses a small
fraction of pretraining data), and (3) achieves state-of-the-art compression and accuracy.

Post-pruning Accuracy Recovery: recent work has leveraged either a teacher model which is
larger/better [2, 27] or teacher-generated synthetic data [1, 16, 36, 37] to improve the accuracy of
an existing trained smaller base model in the Supervised Fine Tuning (SFT)/instruction following
setting. Compared to recent width and depth pruning work [26, 34, 51], to the best of our knowledge,
we are the first to employ distillation from an uncompressed teacher to improve the retraining of
structurally-pruned student models.
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7 Conclusions

This paper has presented a thorough empirical exploration of structured pruning and retraining in
LLMs, offering unique insights into pruning order, effects of combining pruning axes, and retraining
techniques for minimal data use. We have developed a set of compression and retraining best practices,
backed by extensive empirical evidence, which we employ to prune the Nemotron-4 15B model by a
factor of 2-4×. Our compressed MINITRON models are significantly cheaper to obtain compared to
training each model from scratch (requiring up to 40× fewer training tokens), while still performing
favorably to a number of similarly-sized community models; MINITRON models also outperform
multiple state-of-the-art depth and width pruned models from the literature.
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A Appendix

A.1 Width Pruning

Best Aggregation Metric for Width Pruning: Results post-pruning (zero-shot) are shown in
Table 15 and after lightweight retraining in Figure 5.

Batch Sequence 8T LM Loss WikiText2 LM Loss

L2 L2 8.73 8.37
L2 mean 7.18 7.23
L2 var 8.18 8.61
mean L2 8.41 7.84
mean mean 7.21 6.89
mean var 7.94 8.29
var L2 9.01 9.30
var mean 8.34 8.72
var var 10.55 11.14

Table 15: Zero-shot performance of activation-based importance with different batch and sequence
aggregation metrics. LM loss is reported on the validation set of the 8T and WikiText2 datasets.
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Figure 5: Retraining of searched candidates with 1.8B training tokens.
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Figure 6: Comparing depth and width pruning.

A.2 Retraining with Distillation

Choice of loss function: In our experiments with the previous generation of Nemotron models in
Table 17, we see that KLD consistently outperforms R-KLD, cosine and MSE. WSL-KD [56] also
performs inferior to KLD. Hence, we do not repeat all these studies with the experiment setup in
section 4, rather only a subset as shown in Table 18.
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Figure 7: Estimated importance of Transformer layers. Left plot shows the perplexity-based impor-
tance scores, while the right one BI importance scores.

Loss Tokens MMLU HellaSwag HumanEval

Llogits + Lis 18.9B 58.0 73.6 26.8
Llogits 18.9B 58.3 73.8 26.2

Llogits 94B 62.8 79.7 30.4
Table 16: Ablation study for MINITRON 8B using the CT blend with and without Lis, and increased
retraining token count.

Temperature: We experiment with τ =0.1, 0.5, 1.0, 3.0 in the softmax computation. Literature shows
vision (classification) models output a spikey logit distribution and softening the logit distribution with
temperature > 1 results in an improvement when using distillation. However, LLM logit distributions
have higher entropy and hence the inspiration for temperature < 1 to reduce the noise. We observe
best results when τ=1.0.

Top-K: Inspired by the top-K/top-P sampling approach used in LLM inference, we experimented
with retaining only top-K teacher and the corresponding student logits prior to computing Llogits.
This should essentially remove noise from the low probability logits/tokens. We observe that a low
value of top-K (<=100) results in a significant drop in accuracy. The drop is no longer observed
when increasing top-K, but no better than not using top-K. Hence, we skip using top-K for further
experiments.

A.3 Choice of Losses

1. Using loss Lo based on the output activations of encoder block provides a boost.
2. The final 1-2 layers in a Transformer for LLM are highly specialized [12] and mapping

hidden states across (last-2):(last-2) layers for both the student and teacher achieves the
best result [31].

3. Using word embeddings based loss(Lemb) improves accuracy.
4. Computing loss Latt(attention relation loss [48]) based on query, key and value states does

not show any improvement.
5. Adding loss Li based on the input to MLP makes no difference.
6. We weren’t able to experiment with attention scores due to Flash Attention abstractions.
7. Mapping multiple transformer layers either results in no improvement or accuracy degrada-

tion [31].
8. Cosine similarity loss performs the best.

Results are shown in Table 19.

A.4 One-shot pruning and distillation vs Iterative pruning and distillation

One-shot vs iterative within one dimension: In order to understand the best prune-retrain strategy
considering a single dimension that can be pruned across the model (depth), we experiment with
two different approaches for depth pruning and retraining in order to arrive at the MINITRON
8B-Depth-pruned model mentioned above.
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Loss LM loss WikiText PPL

LCLM + Llogits(MSE) 2.144 9.007
LCLM + Llogits(RKLD) 2.140 9.008
LCLM + Llogits(Cosine) 2.134 8.965
LCLM + Llogits(KLD) 2.117 8.791
Llogits(KLD) 2.107 8.720

Table 17: Comparison of loss functions and loss
components on Nemotron-3 8B.

Loss Function LM loss

Llogits(RKLD) 2.665
Llogits(KLD) 2.155

Table 18: Comparison of loss functions
with MINITRON 8B-Depth-pruned. LM
loss is reported on the validation sets of
the 8T.

Loss components LM loss

Llogits 2.155
Llogits + Lo(29:13) 2.145
Llogits + Lo(15:15) + Lemb 2.240
Llogits + Lo(23:15) + Lemb 2.205
Llogits + Lo(29:15) + Lemb 2.203
Llogits + Lo(30:15) + Lemb 2.188
Llogits + Lo(31:15) + Lemb 2.180
Llogits + Lo(28:12) + Lemb 2.141
Llogits + Lo(29:13) + Lemb 2.141
Llogits + Lo(29:14) + Lemb 2.152
Llogits + Lo(30:14) + Lemb 2.150
Llogits + Lo(29:13) + Lemb + Li(29:13) 2.141

Table 19: Ablation study on loss components for computing Lis and different (teacher:student) layer
mapping for Lo and Li. LM loss is reported on the validation set of the 8T. Note: Layer indices start
from 0, teacher Nemotron-4 15B layers (0-31), student MINITRON 8B-Depth-pruned layers (0-15).

As a first step, we rank layer importance with the procedure mentioned in 2.2 borrowed from [34].
Then we:

1. Iteratively prune and distill: Remove the least important layer, distill using 1.8B tokens and
repeat the procedure 16 times. See iterative× 1 16l in Figure 8.

2. One-shot prune and distill: Remove 16 least important layers, distill using 1.8B × 16(30.2B)
tokens. See 1− shot pruning 16l in Figure 8.

In order to mitigate the sharp drop in accuracy and to prevent further catastrophic collapse of the
model, we increase the compute budget from 1.8B to 4 x 1.8B tokens starting with pruning of the 26
layer model which amounts to 86.4B tokens in total. See iterative× 4 16l in Figure 8. Increasing
the training budget improves accuracy, but it still performs worse than the one-shot prune and distill
strategy that uses 30.2B tokens.
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Figure 8: Accuracy on benchmarks for iterative vs one-shot strategy
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With the iterative strategy, we can see in Figure 8 accuracy on:

• Hellaswag and PIQA is retained up to 31 layers and start dropping gradually with further
removal of layers. We see a sharper drop when the model is reduced to 25 layers.

• MMLU score is retained up to 26 layers and start dropping gradually with further removal
of layers. We see a sharp drop when the model is reduced to 20 layers.

This shows that a few layers can be removed from a pretrained model in a lossless manner with
minimal retraining. As for the retraining strategy, it is best to follow the one-shot method. Our
results agree with [26].

One-shot vs iterative across dimensions: We experiment with iterative EMB→MLP-ATT pruning
with retraining after both iterations and one-shot EMB-MLP-ATT pruning and retraining with
equivalent token count as the former. As shown in Figure 9 one-shot achieves better results than the
iterative approach.
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Figure 9: Comparing depth and width pruning.

A.5 Search

All the feasible 8B candidates produced by search are shown in Table 20.

ID Layers Heads MLP Exp. Factor Embedding

1 32 32 12800 5120
2 32 32 13824 4608
3 32 48 11520 4608
4 32 48 16384 4096
5 31 32 12800 5120
6 31 32 16128 4608
7 31 48 13824 4608
8 31 48 16384 4096
9 30 32 12800 5120

10 30 32 16128 4608
11 30 48 13824 4608
12 30 48 16384 4096
13 29 32 12800 5120
14 29 32 16128 4608
15 29 48 13824 4608

Table 20: MINITRON 8B feasible candidates produced by search.

A.6 Compute Resources

All experiments were performed on 16× NVIDIA DGX A100 nodes(8× A100 80GB) for short
turnaround times.
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Figure 10: Retraining of searched candidates for 8B target with 1.8B training tokens.
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